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PIERCE DIODE WITH EXTERNAL CIRCUIT. III.

CHAOTIC BEHAVIOR

William S. Lawson

28 October 1987

Abstract

The e)dstence of the strange attractor discovered by Godfrey in the neighborhood of

a= 3/'for the Pierce Diode is verified, and his numerical results are refined. The evolution

of this attractor is then followed as an external capacitance is introduced.

Introduction

The Pierce diode is perhaps the simplest realistic theoretical model for a bounded one-dimen-

sional plasma system. It is comprised of two parallel electrodes with electrons injected at one of

the electrodes with velocity v 0 . Ions are considered to be infinitely massive, and in a uniform

background which neutralizes the charge density of the electrons at the electrode from which the

electrons are injected. The electrodes are also held at the same potential, i.e., short-circuited (see

Fig. 1). This short circuit allows feedback, and leads to a wealth of interesting behavior. The Pierce

diode is completely characterized by a single dimensionless parameter a = wPL/vo where .;p is the

plasma frequency of the electron beam, and L is the distance between the electrodes [1].

One interesting feature of the Pierce diode which was discovered by Godfrey [2], is that for

a narrow range of the parameter a, the Pierce diode exhibits chaotic behavior without violent

disruption (violent disruption meaning virtual cathode formation and the return of electrons to the

emitter). This behavior was observed through simulations in the neighborhood of a = 2.8.5,. and it is

believed to recur approximately at intervals of 2,r. The observed behavior includes a llopf bifurcation

followed by period doubling bifurcations leading to chaotic behavior following the scenario described

by Feigenbaum [3]. The reason for the formation of the observed strange attractor is uncertain. but

its sudden disappearance is associated with a near-by unstable equilibrium state. EJ

The extended Pierce diode is similar to the standard (or classical) Pierce diode, but instead of a

short circuit between the bounding electrodes, a series RLC circuit is used (see Fig. 2). The behavior

of the extended Pierce diode in the linear regime has been worked out [4] and verified through
'Idea

simulation [5], and its non-uniform equilibria have also been investigated f61. In the work which :/or
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follows, I shall not consider the effect of varying the external resistor or inductor, but will vary only

the external capacitance. The external capacitance has the most profound effect on the non-uniform

equilibria of the extended Pierce diode (indeed it is the only external circuit element to affect the

equilibria), and thus should be the first parameter varied in exploring the strange attractor.

General Properties of the Pierce Diode Equations

The equations of evolution for the Pierce diode with an external capacitor have been derived

elsewhere [6]. They are

T(t) = 1- E(r) sin a(t - r) dr (1)

and
ot

2  
t1 + E(t) = C2 (1 - T(t) 2 ) - a E(r)(t - 7) sin a(t - r) dr (2)

2 J2 -T

where T(t) is the transit time of the electrons just leaving at time t, and E(t) is the electric field at

the injection plane at time t. These equations have several properties which are not obvious, and

these will be discussed. One important property which is not yet known is whether this equation is

reversible in time; specifically, given E(t) over a transit time, is E(t) is unique for earlier times than

those given. This question is of great importance in understanding the character and origin of the

strange attractor. Evidence will be presented for both sides of this question, but a definitive answer

is not yet known.

The most obvious property of this equation is that it is not what is usually called an equation of

evolution, since the formulas do not specify time derivatives of the variables, but rather the variables

themselves. This simplifies the numerical solution of the equations, but complicates the issue of

reversibility. Another fundamental property of the equations is that T(t) is purely an auxiliary

variable; given E(t) over a long enough initial time (long enough for the electron emitted at the

earliest time to have exited), T(t) can ba computed for any time at which it is needed.

A less obvious property of these equations is that perfectly valid initial conditions for the

physical problem cannot always be translated into initial conditions for these equations. Consider.

for example, the perfectly reasonable condition of sinusoidally perturbed positions. and uniform

velocities. i.e., v(x) = 1 and x(to) = t - to + fsinkt (I shall use dimensionless variables throughout

this article). The equations for x and v as functions of t and to (from [6]) are

= t - to + E(r)sin a(t - r)dr 3)Ni
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and

,/ tV= I + E(r) cos a(t -r)dr (4)

If v = 1 for all to, then plainly, E(r) = 0 for all r < t. This precludes the desired perturbation in

position, however. Thus this initial situation could not have come about from the evolution of the

system, and the full fluid equations must bn used to advance the system for one complete transit

time before Godfrey's integral equations can be applied. This in turn would seem to implies some

loss of information, and some irreversibility over at least the first transit time.

The loss of information is more obvious from the simple consideration that in choosing the

initial conditions, one can choose p(.) and v(z) without constraint, whereas in choosing the initial

conditions for Godfrey's equations, only one function, E(t) may be chosen. Thus it is impossible to

run the integral equations backwards to reproduce an arbitrary initial condition, since not enough

information is present.

There is no strong reason to expect more loss of information after one transit time. though.

since after a transit time, all the electrons in the system are subject to the constraint that at their

time of injection, p = v = 1. This imposes a constraint between p and v which did not exist in the

initial conditions. This constraint is enough to guarantee that p and v can be reconstructed from

E(t). This loss of information can clearly be seen in Fig. 3 which shows a phase space plot for a

Pierce diode which was loaded with random perturbations in position. The potential behind the

last of the initially-loaded particles is smooth, but the potential ahead of it is still quite noisy. To

summarize, the complete fluid equations are irreversible (due to the loss of particles at uncontrolled

velocity and density at the collection plane), but the integral equations, which have an additional

constraint, may be reversible. The issue of reversibility will be brought up again when the return

maps are discussed.

Physical Validity of Solution

For Eqs. (1) and (2) to be physically valid, it is necessary for the velocity of the stream of particles

to be a single-valued function of position. The situation depicted in Fig. 4a is physically valid, but

the integral equations do not correctly model it. Since the velocity is a single-valued function of tI.

it is only necessary for x to be a monotonic (in this case decreasing) function of to. From Eq. (3 .

d x 1I

- = -I - -E(to)sin a(t - to) <0 (5)
dto a

ON,
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so physically, it is necessary for

E(to)sinar(t - to) > -a (6)

Since a is large, this implies that whenever

IE(t)l <a (7)

is violated, the solution will soon become unphysical.

Another situation which is not physically allowed, but can occur in the solution of Eqs. (1) and

(2) is that depicted in Fig. 4b. Here, the velocity of the "outgoing" particles has reversed, so that

particles which physically would have been absorbed (but which still exist mathematically), are re-

entering the region of interest. Again, the Eqs. (1) and (2) allow this without contradiction, even

though the situation is unphysical. The simplest t.st for this situation is that when

dT
-t>1 (S)

the solution is no longer physically valid. The transit time T represents the "age" of whatever

particle is at the exit plane. If this age is increasing faster than the flow of time, then it must be

that particles which were once past the boundary are re-entering.

Mathematically speaking, the physical constraints on the solution are rather arbitrary. Since

the solution of Eqs. (1) and (2) may be of mathematical interest despite being unphysical, in the

work presented here, all purely physical restrictions have been ignored. The situations represented

in Figs. 4a-d are thus allowed, but Figs. 4c and 4d lead to problems of a mathematical character

which dictate the termination of the solution. In Fig. 4c, the particles in the top part of the -'S" are

affecting the solution even though they have passed beyond the physical boundary of the system.

because they were emitted at a time later than t - T, and so are still included in both Eq. (1) and

Eq. (2). This is mathematically acceptable. The difficulty arises when the lower bend of the "S"

moves across the right-hand boundary, and the solution for T (from Eq. (1)) ceases to exist. A

new solution could be found, but it would have to jump discontinuously, and since the solution has

already lost physical validity, there can be no justification for this.

In Fig. 4d, the opposite problem occurs as in Fig. 4c. Again, the solution for T ceases to exist.

and the integration of the equations must stop. Both the situation in Fig. 4c and Fig. 4d occur when

dx/dto at the exit plane (t = to + T) becomes zero. Thus, from Eq. 5. when

1 + -E(t - T)sinaT- 0 ()
at

¢'.-



the integratiot, of the equations must end. This is the only criterion (other than a time limit on

which the integration was stopped.

In practice the effect of the physical restrictions is to impose an amplitude limit on the oscilla-

tions. This has no effect on the bifurcation diagram for C = oc (the short circuit case). but as the

external capacitance is decreased, the amplitude of the stable oscillations tends to increase, and so

part of the high- amplitude end of the bifurcation diagram will be lost.

Numerical Integration Scheme

The integral equations are of non-standard form, and the method of numerical integration used

is therefore unusual. As with most methods of time integration, the continuous functions E and T

are discretized at uniform time intervals t,+, = t, + At so that E, ; E(t,), and similarly for T.

Inspection of Eq. (1) reveals that only the left-hand side of the equation (for t = t,) depends

on a quantity known at t,, since the kernel of the integral vanishes at r = t. Thus the integral

can be evaluated numerically, in order to find T,, (this is a little tricky since the lower integration

limit depends on Tn, but some simple algebra solves the problem). This value of T, can be put into

Eq. (2), and the integral in Eq. (2) can be evaluated just as the integral of Eq. (1) was, in order to

calculate E,.

There is a slight difficulty in evaluating the integrals at the lower limit of r = t - T. Since

the transit time T will not be a multiple of the time step At, the last interval to be integrated will

not be a full time step wide. This fraction of a time step need not be evaluated as accurately as

the rest of the integral (since the error it produces occurs only once), but it cannot be ignored. If

the trapezoidal rule is used for the integration, then linear interpolation of the indefinite integral

is sufficiently accurate (some runs with a more sophisticated method of handling the last time step

verified this). It is not clear that a higher-order method of integration (e.g.. Simpson's Rule) would

improve the accuracy of the results, since the derivation of these higher order methods assumes

that the function to be integrated is a known, smooth function, whereas our integrand is a discrete

approximation.

It is possible to speed up the numerical scheme considerably by expanding sin o( t- r) and writim

J-E(r) sin(t-r)dr=sinatJE(r)cosadr-cosatIE(r)inad



The integrands on the right do not depend on time, and the limits of integration vary slowly with

time. This allows the integrals to be computed each time step by adjusting for the small change

in the limits of integration rather than recomputing the entire integral. This saves much computer

time. This scheme does require that o be strictly constant, which is a problem in generating

bifurcation diagrams; however, a can be varied by small jumps after which the integrals on the

right-hand side of (10) must be completely re-evaluated. The solution before the jump in a becomes

the initial condition on the solution after the jump. If these jumps are infrequent, much computer

time can still be saved by using this scheme.

This numerical integration scheme was tested on some equilibrium solutions which are known

from theory [2], and the results were accurate to four decimals. It is to be expected that the time-

varying solution will be less accurate, but of the same order of accuracy.

As was mentioned in the previous section, the integration must be stopped when condition (9)

occurs. Not surprisingly, the left-hand side of Eq. (9) occurs as a denominator in the equation for

correcting the value of T each time step, and the method of integration fails when condition (9)

occurs. Testing condition (9) is therefore quite simple.

The study of discretized integral equations like this one has only just begun. The sole instance

I have found of such study barely touched on convolutions of the form of Eq. (1) and (2), and did

not include the variable interval of integration [7].

Verification of the Results of Godfrey

The results given by Godfrey have been confirmed in each case in which they have been tested.

with one exception which does not modify the important conclusions. Figure 5 shows the bifurcation

diagram obtained by Godfrey as a function of a. His time step (normalized to the unperturbed

transit time L/vo) was roughly 1/50. His Poincar6 section was chosen at the maximum value of

T(t) of each orbit. In order to make comparison of our results simpler, this same section was used

in the present work even though it is not clear that it is a truly valid Poincar6 section. (Choosing

the maximum of T as the Poincar6 section is not necessarily valid since the locus of all points which

are maxima of T for different cycles is not necessarily a continuous or well-behaved curve in E-T

space.)

Figure 6 shows the bifurcation diagram with a time step of 1/64. Although the attractors are

very similar, there are significant differences, particularly in the smaller values of a. Successive



halving of the time step reveals that the diagrams generated by time steps of 1/256 and 1/512 are

visually indistinguishable (see Fig. 7), but quite different from the diagram generated by Godfrey.

While the strange attractor remains, as well as all other important results, it is necessary to conclude

that the time step in Godfrey's work was not small enough to produce the accuracy necessary for

generating the correct bifurcation diagram. In all the work which follows, a time step of 1/256 is

used.

One casualty of the better convergence of the bifurcation diagram is the break Godfrey observed

in a period-5 window (the attractor shifted suddenly from one position to another as a was varied

continuously), since the entire period-5 window is an artifact of the incomplete convergence. (A

window is a range of values of a over which the motion is regular, and the period number is the

number of cycles about the center of the attractor the orbit makes before closing on itself.) An even

more striking jump from one chaotic attractor to another was observed, however, in the bifurcation

diagram for C = 1000 (C being the external capacitance), as will be discussed.

One of the most important results obtained by Godfrey is that the return map (a plot of each

point of the Poincar6 map versus its predecessor) appears to be one-dimensional, i.e., a line with no

thickness or structure. If the return map is truly one-dimensional, then it generates an irreversible

sequence of points, i.e., knowing everything about a point tells you what its successor will be. but

its predecessor may be indeterminate. To verify this result, rather than use Godfrey's Poincar

section (which carries no guarantee of being a continuous section, i.e., a smooth curve cutting

across the trajectories in E and T space), a section is made at T = 0, dT/dt < 0. Also. consecutive

values of E are plotted rather than values of T. Figure 7 is marked with the values of a for which

return maps are shown in Figs. 8-12. Note that although the maps are not single-valued, they have

no discernible structure within the line (except for one small spur on the most complex one). This

implies that either the equations of motion are irreversible, or that the subdominant eigenvalue of

perturbations about the chaotic orbit is much less than the dominant one. There is one clue that

the second possibility may be the correct one in that very near the point at which the attractor ends

(Fig. 12), the curve develops a spur on one of the bends in the lower right corner of the return map.

which indicates that an infinitude of such spurs may exist for all values of a. but lie so close to the

rest of the attractor that they cannot be seen. If this is the case. then the attractor is actually ot

fractional dimension (probably very close to dimension one), and the flow could then be completekl

time reversible.

a0 1



The second. third, and fourth period-doubling bifurcations can be used to find an approximation

to what one would expect to be Feigenbaum's number [3]. The values of a at these points are

= 2.8581090 ± .0000005, 02 = 2.8578912 ± .0000002, and 03 = 2.8578442 ± .0000001. from which

the value (a, - aC)/(aI. - 03) = 4.63 ± .03 which is in fairly good agreement with Feigenbaui.n-:

number 4.669.

An interesting, and to my knowledge unreported, phenomenon is noticeable in these bifurcation

diagrams. A pattern of short vertical lines seems to follow a straight horizontal line from the last

band-merging (at a = 2.85671r) on. Fainter patterns can be seen starting from other band- mergigs.

This effect can be seen better in a blow-up of the region of the last band-merging (see Fig. 13). The

effect is also observable in bifurcation diagrams derived from one-dimensional non-invertible maps

(see [8]). This apparent structure is due to the presence of an unstable cycle. The system orbit is

not likely to pass near this unstable cycle, but when it does, it tends to stay near it for a longer

time, since both the approach and retreat are exponential (just as a ball rolling up and over a hill

will spend most of its time near the top). Thus, since only a limited number of orbits are completed

for each value of c, some values of c will show no points near the unstable cycle, and others will

show many. On the average, the density of points is neither enhanced nor depleted at these unstable

cycles.

Godfrey also commented on the destruction of the strange attractor resulting from the collision

of the attractor with an unstable equilibrium, a situation called a crisis [9]. Discussion of this

phenomenon will be deferred until the results for finite values of the external capacitor have boen"

described, since they add much to the evidence.

Strange Attractor with an External Capacitor

Before examining the behavior of the strange attractor as the capacitance is varied, it is im-

portant to examine the linear and equilibrium characteristics of this region as a function of the

capacitance. The real part of the growth rate is shown as a function of ( for several values of

the capacitance in Fig. 14. Note that for infinite capacitance, the growth rate is zero for a = 27.

and negative for a short region of a just less than 3-r. With the introduction of a large external

capacitance, the growth rate at 2r becomes negative (the transition from negative to positive, at (I

slightly larger than 2,r. also becomes a Hopf bifurcation), and the growth rates near o = :,br bome "

less negative. This trend continues until the external capacitance C = 8. at which point the growth

0Z



rate at a = 3,r becomes exactly zero (as can be shown from the dispersion relation). At C - 5 rih.

growth rate is entirely non-negative near a = 3,r. The growth rate for a = 3,r peaks at ' = ,

for C < 8, it once again becomes negative near ar = 3-r (see Fig. 15). As C" becomes smail-r tl,,

growth rate is positive for a narrower and narrower range of a, until at roughly C = 4. the -ysr,,m

is linearly stable for all 27r < a < 3-.r.

The unstable equilibrium, which is responsible for the crisis which terminates the strawic- at-

tractor, is a sensitive function of C. Figure 16 shows the value of E0 at the unstable equilibrium

versus a for several values of C. The equilibrium ceases to exist physically for E0 < -(,. but is stiil

present mathematically, and may still have an effect on the trajectory of the solution. The euilib-

rium values of T tend to increase as C is decreased.

Now let us examine how the attractor changes with the external capacitance. First I will simply

describe the changes, then I will offer some interpretations.

The shape of the bifurcation diagram changes rapidly with even rather large values of C. Fig-

ure 17 shows the bifurcation diagram for C = 1000, and already the shape is much altered (compare

Fig. 7). This bifurcation diagram shows an interesting jump in the attractor at a = 2.8515,r. Bot h

attractors appear to be chaotic, bvt the solution jumps suddenly from one to the other.

Figures 18 and 19 show the bifurcation diagrams for C = 100 and C = 20. One obvious trend

is that as the capacitance is decreased, the amplitude at which the crisis occurs increases. Between

C = 11 and C = 10. the strange attractor rapidly disappears. Figures 20-22 show the bifurcation
diagrams for C 11, C = 10.7, and C = 10.4. The bifurcation diagram for C = 10 shows no

bifurcations (aside from the initial Hopf bifurcation leading to the non-uniform solution).

While the strange attractor has vanished, the behavior for values of C less than 10 is interestinc

Between C = 9 and roughly C = 6, the stable limit cycle seems to cease to exist. In fact. it probably

is just stable over a very narrow range of values of a, with the possible exception of C = S. which

has no Hopf bifurcation (the growth rate is not negative, and a double root exists at , = 3.

In the meantime. the solution for smaller a (the point of zero linear growth near a = 27- is a

Hopf bifurcation for all finite values of C). becomes stable over a wider and wider range of k as (

is decreased. At no time, however, does this other stable limit cycle show signs of biffur,'at ins *r

chaotic behavior. At roughly C = 5. this limit cycle meets the limit cycle originat in_ at liihlr k.

forming one continuous limit cycle as a function of o (see Fig. 23). At roughly C 4. the most

A 
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% unstable growth rate becomes zero. and only the uniform equilibrium is stable for all ( b etwe,,i "-

- and 3,r.

Returning now to the strange attractor, Fig. 24 shows the orbit in E and T of the soutici ::r

C = 11 near the crisis (o = 2.758-r). The unstable equilibrium is marked as a large dot nor to

confused with the large blob at E = 0, T = 1). Just as in the C = c case the unstable equiiirilmi

is clearly disturbing the attractor to the point at which it may create a hole in the attractor baSin.

The shape of this orbit is rather complex, and it can be seen that one orbit does not even cross

T = 1, making the chosen Poisson section of dubious value. For the sake of consistency, though,. tho

return map will still be plotted at T = 1.

Now some general comments comparing the crisis observed in the Pierce Diode and the crises

studied by Grebogi, Ott, and Yorke [9] are in order. Grebogi et at. studied non-invertible inap

with one variable whose return map was known as a function of some parameter. It is possible that

the Pierce diode attractor can be reduced to such a map, and it can almost certainly be reduced

to a similar problem which is a non-invertible, one-dimensional map [10]. If this can be done. th-

E is almost certainly not the best variabie to use. A change of variable is in order. but the proper

variable, one which contains all the relevant information and no extraneous information, has not

been found. This variable, if it exists, would produce a simple, roughly parabolic return map as has

been studied by Ott and Grebogi, and it is to be hoped that its value at the uniform equilibrium

would exactly coincide with the crisis.

In the cases studied by Ott and Grebogi. the strange attractor ceased to exist only when the

unstable cycle exactly contacted the attractor. It is this predictive power which makes the concept so

powerful. Here, though, only the existence of the unstable equilibrium is known, and the desrtructon

of the attractor, while clearly associated with the unstable equilibrium, cannot be predicted with

any accuracy. Plainly there is more of importance to the system at any given time than E anid T

at that time. since these values pass over and around the equilibrium values without creating aI

large disruption. Only when the value of E remains near the equilibrium value for a longer period

of time does the equilibrium seem to greatly influence the solution.

An interesting question is whether the unstable equilibrium is necessary for the foritioi, of

the strange attractor. The lack of any strange attractor in the region just above ai = '2 f -,r any

value of C is suggestive of this. since the unstable equilibrium for this region is far away from the

solution (in fact. the unstable equilibrium is in the unphysical E < -o region).

J.



Also suggestive is the character of the orbits. The orbits seem regular. and seldom cro-s ju-st

before they encounter the unstable equilibrium (T < I and E < 0). but as they pass near it. tlh..v

diverge, and immediately afterward, they reconverge. crossing in the process. This seems to ilCat,,

that the unstable equilibrium is responsible for the exponential divergence of neighorin; ,rHiIts

required for a strange attractor, and that without it (if such an idea is meaningful) the orbits would

quickly converge to a steady (oscillatory) state.

Summary

The work of Godfrey on the Pierce diode strange attractor has been verified owitih one rai, r

correction). The strange attractor was found where expected, and followed the prediction 4

baum regarding the cascade of bifurcations leading to chaos. Only the detailed structure was t,,ini

to differ from Godfrey's result, this being attributed to insufficiently small time steps in (Godfr,,.v

numerical integration of the equations.

The strange attractor was studied as an external capacitance was introduced and varied. anl

the results were discussed. In particular, it was suggested, on the basis of circumstantial evidn,-.

that the unstable equilibrium is necessary not only for the destruction of the attractor (in a cri-is.

but for the existence of the strange attractor.
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Fig. 4. Situations which limit the physical and mathematical validity of the solution. In

(a). the velocity is not a single-valued function of position, in (b), particles which have left

the model return; in (c) and (d), the transit time T ceases to exist.
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